Introduction
As a software engineer, it is important to stay relevant in web technology by reading blog posts from blogger sites such as dev.to and HashNode. Many blog authors publish posts every day and readers have to select good ones from all of them to learn smartly and quickly. In the past, I scanned the first few paragraphs of the post and decided whether or not to finish reading it. Now, I can application to summarize a web page using langchain.js and Gemini 1.5 Pro. If I read the summary and find the topic interesting, I will continue to read the entire blog post.
What is langchain.js?
Langchain is a framework for developing applications powered by language models. It offers libraries to create prompts, text embedding, retrievers, and chat models and integrate with third parties such as Google.
Generate Gemini API Key
Go to https://aistudio.google.com/app/apikey to generate an API key for a new or an existing Google Cloud project.
Create a new NestJS Project
nest new nestjs-text-summarization
Install dependencies
npm i --save-exact @nestjs/swagger @nestjs/throttler dotenv compression helmet langchain @langchain/google-genai @langchain/community class-validator class-transformer
Generate a Translation Module
nest g mo summarization
nest g co summarization/presenters/http/summarization --flat
nest g s summarization/application/geminiSummarization --flat
nest g s summarization/application/summarizationChain --flat
Create a Summarization module, a controller, a service for the API and another service to build summarization chains.
Define Gemini environment variables
// .env.example
PORT=3000
GOOGLE_GEMINI_API_KEY=<google gemini api key>
GOOGLE_GEMINI_MODEL=gemini-pro
Copy .env.example
to .env
, and replace GOOGLE_GEMINI_API_KEY
and GOOGLE_GEMINI_MODEL
with the actual API Key and the Gemini model name, respectively.
- GOOGLE_GEMINI_API_KEY – Gemini API key of Gemini
- GOOGLE_GEMINI_MODEL – Gemini mode name. In this application, I use Gemini 1.5 Pro to perform web page summarization
Add .env
to the .gitignore
file to prevent accidentally committing the Gemini API Key to the GitHub repo
Add configuration files
The project has 3 configuration files. validate.config.ts
validates the payload is valid before any request can route to the controller to execute
// validate.config.ts
import { ValidationPipe } from '@nestjs/common';
export const validateConfig = new ValidationPipe({
whitelist: true,
stopAtFirstError: true,
forbidUnknownValues: false,
});
env.config.ts
extracts the environment variables from process.env
and stores the values in the env
object.
// env.config.ts
import dotenv from 'dotenv';
import { ModelTypes } from '~summarization/infrastructure/types/model.type';
dotenv.config();
export const env = {
PORT: parseInt(process.env.PORT || '3000'),
GEMINI: {
API_KEY: process.env.GOOGLE_GEMINI_API_KEY || '',
MODEL_NAME: process.env.GOOGLE_GEMINI_MODEL || 'gemini-pro',
},
};
throttler.config.ts
defines the rate limit of the Translation API
// throttler.config.ts
import { ThrottlerModule } from '@nestjs/throttler';
export const throttlerConfig = ThrottlerModule.forRoot([
{
ttl: 60000,
limit: 10,
},
]);
Each route allows ten requests in 60,000 milliseconds or 1 minute.
Bootstrap the application
// bootstrap.ts
export class Bootstrap {
private app: NestExpressApplication;
async initApp() {
this.app = await NestFactory.create(AppModule);
}
enableCors() {
this.app.enableCors();
}
setupMiddleware() {
this.app.use(express.json({ limit: '1000kb' }));
this.app.use(express.urlencoded({ extended: false }));
this.app.use(compression());
this.app.use(helmet());
}
setupGlobalPipe() {
this.app.useGlobalPipes(validateConfig);
}
async startApp() {
await this.app.listen(env.PORT);
}
setupSwagger() {
const config = new DocumentBuilder()
.setTitle('Generative AI Text Summarization')
.setDescription('Integrate with LangChain and Gemini to summarize a web page')
.setVersion('1.0')
.addTag('Langchain, Gemini 1.5 Pro Model')
.build();
const document = SwaggerModule.createDocument(this.app, config);
SwaggerModule.setup('api', this.app, document);
}
}
Add a Bootstrap
class to setup Swagger, middleware, global validation, cors, and finally application start.
// main.ts
import { Bootstrap } from '~core/bootstrap';
async function bootstrap() {
const bootstrap = new Bootstrap();
await bootstrap.initApp();
bootstrap.enableCors();
bootstrap.setupMiddleware();
bootstrap.setupGlobalPipe();
bootstrap.setupSwagger();
await bootstrap.startApp();
}
bootstrap()
.then(() => console.log('The application starts successfully'))
.catch((error) => console.error(error));
The bootstrap function enables CORS, registers middleware to the application, sets up Swagger documentation, and uses a global pipe to validate payloads.
I have laid down the groundwork and the next step is to add routes to receive payload to summarize a web page and provide a summary.
Define Summarize DTO
// summarize.dto.ts
import { IsNotEmpty, IsOptional, IsString, IsUrl } from 'class-validator';
export class SummarizeDto {
@IsUrl()
@IsNotEmpty()
url: string;
@IsOptional()
@IsString()
topic?: string;
}
SummarizeDto
accepts a URL and optionally a topic. I observed that the summary matches the blog post’s content with high accuracy when an appropriate topic is provided.
Define Summarize Interface
This application is designed to summarize a web page using langchain.js and Gemini Pro Model. Therefore, I created a Summarize
interface and all services that implement the interface must fulfill the contract.
// model-provider.interface.ts
export interface ModelProvider {
company: string;
model: string;
developer: string;
}
// summarize-input.interface.ts
export interface SummarizeInput {
url: string;
topic?: string;
}
// summarize-result.interface.ts
export interface SummarizationResult {
url: string;
text: string;
}
// summarize.interface.ts
import { ModelProvider } from './model-provider.interface';
import { SummarizeInput } from './summarize-input.interface';
import { SummarizationResult } from './summarize-result.interface';
export interface Summarize {
getLLModel(): ModelProvider;
summarize(input: SummarizeInput): Promise<SummarizationResult>;
bulletPoints(input: SummarizeInput): Promise<SummarizationResult>;
}
- getLLModel – returns the company and model used to summarize a web page
- summarize – this method loads the web page, splits the document into chunks, and returns the summary in paragraphs
- bulletPoints – this method loads the web page, split the document into chunks, and returns the bullet point summary
Implement Gemni Summarization Service
// gemini.model.ts
import { HarmBlockThreshold, HarmCategory } from '@google/generative-ai';
import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
import { env } from '~configs/env.config';
export const googleChatModel = new ChatGoogleGenerativeAI({
model: env.GEMINI.MODEL_NAME,
maxOutputTokens: 2048,
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
},
],
temperature: 0,
topK: 10,
topP: 0.5,
apiKey: env.GEMINI.API_KEY,
});
// local-llm.provider.ts
import { Provider } from '@nestjs/common';
import { LLM } from '~core/constants/translator.constant';
import { googleChatModel } from '../models/gemini.model';
export const LLM_PROVIDER: Provider = {
provide: LLM,
useValue: googleChatModel,
};
LLM_PROVIDER
creates a provider that returns a Google Generative AI Chat Model.
// summarization-chain.service.ts
// Omit the import statements
@Injectable()
export class SummarizationChainService {
constructor(@Inject(LLM) private model: ChatGoogleGenerativeAI) {}
createParagraphsChain(topic: string): StuffDocumentsChain {
const topicInput = topic ? ` of {topic}` : '';
const systemMessage = `Write a summary of the following text delimited by triple dashes which covers the key points${topicInput}.`;
const stuffPromptTemplate = `
${systemMessage}
Return your response in two paragraphs without bullet points.
---{text}---
PARAGRAPH:`;
const inputVariables = topic ? ['text', 'topic'] : ['text'];
const stuffPrompt = new PromptTemplate({
template: stuffPromptTemplate,
inputVariables,
});
return loadSummarizationChain(this.model, {
type: 'stuff',
prompt: stuffPrompt,
verbose: true,
}) as StuffDocumentsChain;
}
createBulletPointsChain(topic: string): StuffDocumentsChain {
const topicInput = topic ? ` of {topic}` : '';
const systemMessage = `Write a summary of the following text delimited by triple dashes which covers the key points${topicInput}.`;
const stuffPromptTemplate = `
${systemMessage}
Return your response in bullet points.
---{text}---
BULLET POINT SUMMARY:`;
const inputVariables = topic ? ['text', 'topic'] : ['text'];
const stuffPrompt = new PromptTemplate({
template: stuffPromptTemplate,
inputVariables,
});
return loadSummarizationChain(this.model, {
type: 'stuff',
prompt: stuffPrompt,
verbose: true,
}) as StuffDocumentsChain;
}
private async createDocumentsFromUrl(url: string) {
const loader = new CheerioWebBaseLoader(url);
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 2000, chunkOverlap: 100 });
return loader.loadAndSplit(textSplitter);
}
async generateAnswer(stuffChain: StuffDocumentsChain, input: SummarizeInput): Promise<string> {
const { url, topic } = input;
const docs = await this.createDocumentsFromUrl(url);
const topicInputVariable = topic ? { topic } : {};
const results = await stuffChain.invoke({
...topicInputVariable,
input_documents: docs,
});
return results.text as string;
}
}
SummarizationChainService implements methods that construct a StuffDocumentsChain
.
- createDocumentsFromUrl – a private method that loads the web page and splits the content into small documents.
- createParagraphsChain – creates a
StuffDocumentsChain
that generates summary in paragraphs. - createBulletPointsChain- creates a
StuffDocumentsChain
that generates bullet point summary. - generateAnswer – the method uses the
StuffDocumentsChain
to generate the answer from the documents, URL, and topic.
// gemini-summarization.service.
// Omit the import statements to save space
@Injectable()
export class GeminiSummarizationService implements Summarize {
constructor(private chainService: SummarizationChainService) {}
getLLModel(): ModelProvider {
return {
company: 'Google',
developer: 'Google',
model: env.GEMINI.MODEL_NAME,
};
}
async summarize(input: SummarizeInput): Promise<SummarizationResult> {
const stuffChain = await this.chainService.createParagraphsChain(input.topic);
const text = await this.chainService.generateAnswer(stuffChain, input);
return {
url: input.url,
text,
};
}
async bulletPoints(input: SummarizeInput): Promise<SummarizationResult> {
const stuffChain = await this.chainService.createBulletPointsChain(input.topic);
const text = await this.chainService.generateAnswer(stuffChain, input);
return {
url: input.url,
text,
};
}
}
GeminiSummarizationService
injects SummarizationChainService
and calls the chain to generate a summary.
Implement Summarization Controller
// summarization.controller.ts
// Omit the import statements to save space
@Controller('summarization')
export class SummarizationController {
constructor(private service: GeminiSummarizationService) {}
@Post()
summarize(@Body() dto: SummarizeDto): Promise<SummarizationResult> {
return this.service.summarize(dto);
}
@Post('bullet-points')
createBulletPoints(@Body() dto: SummarizeDto): Promise<SummarizationResult> {
return this.service.bulletPoints(dto);
}
@Get('llm')
getLLModel(): ModelProvider {
return this.service.getLLModel();
}
}
The SummarizationController
injects GeminiSummarizationService
using langchain.js and Gemini 1.5 Pro. The endpoints invoke the methods to load the web page to generate a summary .
- /summarization – generate a summary in paragraph format
- /summarization/bullet-points – generate a bullet point summary
- /summarization/llm – return the information of the LLM, company and developer
Module Registration
The SummarizationModule
provides SummarizationChainService
, GeminiSummarizationService
, and LLM_PROVIDER
. The module has one controller that is SummarizationController
.
// summarization.module.ts
// Omit the import statements due to brevity reason
@Module({
controllers: [SummarizationController],
providers: [SummarizationChainService, GeminiSummarizationService, LLM_PROVIDER],
})
export class SummarizationModule {}
Import SummarizationModule
into AppModule
.
// app.module.ts
@Module({
imports: [throttlerConfig, SummarizationModule],
controllers: [AppController],
providers: [
{
provide: APP_GUARD,
useClass: ThrottlerGuard,
},
],
})
export class AppModule {}
Test the endpoints
I can test the endpoints with cURL, Postman or Swagger documentation after launching the application.
npm run start:dev
The URL of the Swagger documentation is http://localhost:3000/api.
In cURL
curl --location 'http://localhost:3000/summarization' \
--header 'Content-Type: application/json' \
--data '{
"url": "https://js.langchain.com/docs/expression_language/streaming#chains",
"topic": "langchain, streaming"
}'
curl --location 'http://localhost:3000/summarization/bullet-points' \
--header 'Content-Type: application/json' \
--data '{
"url": "https://js.langchain.com/docs/expression_language/streaming#chains",
"topic": "langchain, streaming"
}'
Dockerize the application
// .dockerignore
.git
.gitignore
node_modules/
dist/
Dockerfile
.dockerignore
npm-debug.log
Create a .dockerignore
file for Docker to ignore some files and directories.
// Dockerfile
# Use an official Node.js runtime as the base image
FROM node:20-alpine
# Set the working directory in the container
WORKDIR /app
# Copy package.json and package-lock.json to the working directory
COPY package*.json ./
# Install the dependencies
RUN npm install
# Copy the rest of the application code to the working directory
COPY . .
# Expose a port (if your application listens on a specific port)
EXPOSE 3000
# Define the command to run your application
CMD [ "npm", "run", "start:dev"]
I added the Dockerfile
that installs the dependencies, builds the NestJS application, and starts it at port 3000.
// .env.docker.example
PORT=3000
GOOGLE_GEMINI_API_KEY=<google gemini api key>
GOOGLE_GEMINI_MODEL=gemini-pro
WEB_PORT=4200
.env.docker.example
stores the relevant environment variables that I copied from the NestJS application.
// docker-compose.yaml
version: '3.8'
services:
backend:
build:
context: ./nestjs-text-summarization
dockerfile: Dockerfile
environment:
- PORT=${PORT}
- GOOGLE_GEMINI_API_KEY=${GOOGLE_GEMINI_API_KEY}
- GOOGLE_GEMINI_MODEL=${GOOGLE_GEMINI_MODEL}
ports:
- "${PORT}:${PORT}"
networks:
- ai
restart: unless-stopped
networks:
ai:
I added the docker-compose.yaml in the root folder, which was responsible for creating the NestJS application container.
This concludes my blog post about using langchain.js and Gemini 1.5 Pro model to solve a real-world problem. I only scratched the surface of LangChain LLM, and LangLang supports many integrations to solve problems in different domains. I hope you like the content and continue to follow my learning experience in Angular, NestJS, and other technologies.
Resources:
- Github Repo: https://github.com/railsstudent/fullstack-genai-text-summeration-app/tree/main/nestjs-text-summarization
- LangChain Integrations: https://js.langchain.com/docs/integrations/chat/google_generativeai
- Summarization Large Documents Code Lab – https://github.com/GoogleCloudPlatform/generative-ai/blob/main/language/use-cases/document-summarization/summarization_large_documents_langchain.ipynb